Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Submicron Raman and photoluminescence topography of InAs/Al(Ga)As quantum dots structures

Identifieur interne : 000030 ( Russie/Analysis ); précédent : 000029; suivant : 000031

Submicron Raman and photoluminescence topography of InAs/Al(Ga)As quantum dots structures

Auteurs : RBID : Pascal:13-0081539

Descripteurs français

English descriptors

Abstract

Two-period structures with and without vertical coupling between indirect and direct bandgap InAs quantum dots (QDs) both with type I band alignment, grown by molecular-beam epitaxy, were investigated by confocal Raman and photoluminescence (PL) microspectroscopy. The observed blue shift of PL band of the indirect (direct) bandgap QD by 20 (80)meV with decrease of thickness of Ga(Al)As intermediate layer between two InAs QD layers from 30 to 8 nm is considered as caused by increase of elastic strains (decrease of QDs sizes) in QD layers and by coupling between QDs electronic states. Scanning confocal resonant Raman microspectroscopy was applied for non-destructive evaluation of composition at various depths along the thickness of vertical coupling of the upper InAs/AlGaAs and lower InAs/AlAs QDs layers of the sandwich structures. Based on the analysis of determined from the in-depth Raman spectra optical phonons frequencies, the depth distribution of composition in InAlAs and GaAlAs alloy layers formed as a result of strain-driven enhanced interdiffusion was determined.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0081539

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Submicron Raman and photoluminescence topography of InAs/Al(Ga)As quantum dots structures</title>
<author>
<name sortKey="Kolomys, O F" uniqKey="Kolomys O">O. F. Kolomys</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>V. Lashkaryov Institute of Semiconductor Physics National Academy of Sciences of Ukraine, 45 Nauky pr.</s1>
<s2>03028 Kyiv</s2>
<s3>UKR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Ukraine</country>
<wicri:noRegion>03028 Kyiv</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Strelchuk, V V" uniqKey="Strelchuk V">V. V. Strelchuk</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>V. Lashkaryov Institute of Semiconductor Physics National Academy of Sciences of Ukraine, 45 Nauky pr.</s1>
<s2>03028 Kyiv</s2>
<s3>UKR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Ukraine</country>
<wicri:noRegion>03028 Kyiv</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Shamirzaev, T S" uniqKey="Shamirzaev T">T. S. Shamirzaev</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>A.V. Rzhanov Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Sciences</s1>
<s2>630090 Novosibirsk</s2>
<s3>RUS</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<wicri:noRegion>630090 Novosibirsk</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Romanyuk, A S" uniqKey="Romanyuk A">A. S. Romanyuk</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>V. Lashkaryov Institute of Semiconductor Physics National Academy of Sciences of Ukraine, 45 Nauky pr.</s1>
<s2>03028 Kyiv</s2>
<s3>UKR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Ukraine</country>
<wicri:noRegion>03028 Kyiv</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tronc, P" uniqKey="Tronc P">P. Tronc</name>
<affiliation wicri:level="3">
<inist:fA14 i1="03">
<s1>Centre National de la Recherche Scientifique, Ecole Superieure de Physique et de Chimie Industrielles de la Villede Paris, 10 rue Vauquelin</s1>
<s2>75005 Paris</s2>
<s3>FRA</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Île-de-France</region>
<settlement type="city">Paris</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0081539</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 13-0081539 INIST</idno>
<idno type="RBID">Pascal:13-0081539</idno>
<idno type="wicri:Area/Main/Corpus">001275</idno>
<idno type="wicri:Area/Main/Repository">001473</idno>
<idno type="wicri:Area/Russie/Extraction">000030</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0169-4332</idno>
<title level="j" type="abbreviated">Appl. surf. sci.</title>
<title level="j" type="main">Applied surface science</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aluminium arsenides</term>
<term>Bilayers</term>
<term>Blue shift</term>
<term>Depth profiles</term>
<term>Elastic deformation</term>
<term>Electronic structure</term>
<term>Energy gap</term>
<term>Film growth</term>
<term>Gallium arsenides</term>
<term>Indium arsenides</term>
<term>Inorganic compounds</term>
<term>Interdiffusion</term>
<term>Molecular beam epitaxy</term>
<term>Optical phonons</term>
<term>Phonon spectra</term>
<term>Photoluminescence</term>
<term>Quantum dots</term>
<term>Raman scattering</term>
<term>Resonance Raman scattering</term>
<term>Sandwich structures</term>
<term>Semiconductor materials</term>
<term>Spectral line shift</term>
<term>Strains</term>
<term>Surface topography</term>
<term>Ternary compounds</term>
<term>Thickness</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Photoluminescence</term>
<term>Topographie surface</term>
<term>Arséniure d'indium</term>
<term>Semiconducteur</term>
<term>Composé minéral</term>
<term>Point quantique</term>
<term>Bande interdite</term>
<term>Croissance film</term>
<term>Epitaxie jet moléculaire</term>
<term>Déplacement vers le bleu</term>
<term>Déplacement raie</term>
<term>Epaisseur</term>
<term>Bicouche</term>
<term>Déformation élastique</term>
<term>Structure électronique</term>
<term>Diffusion Raman résonance</term>
<term>Arséniure d'aluminium</term>
<term>Composé ternaire</term>
<term>Arséniure de gallium</term>
<term>Structure sandwich</term>
<term>Spectre phonon</term>
<term>Phonon optique</term>
<term>Profil profondeur</term>
<term>Déformation mécanique</term>
<term>Diffusion mutuelle</term>
<term>Diffusion Raman</term>
<term>InAs</term>
<term>AlAs</term>
<term>AlGaAs</term>
<term>7855</term>
<term>7830F</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Composé minéral</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Two-period structures with and without vertical coupling between indirect and direct bandgap InAs quantum dots (QDs) both with type I band alignment, grown by molecular-beam epitaxy, were investigated by confocal Raman and photoluminescence (PL) microspectroscopy. The observed blue shift of PL band of the indirect (direct) bandgap QD by 20 (80)meV with decrease of thickness of Ga(Al)As intermediate layer between two InAs QD layers from 30 to 8 nm is considered as caused by increase of elastic strains (decrease of QDs sizes) in QD layers and by coupling between QDs electronic states. Scanning confocal resonant Raman microspectroscopy was applied for non-destructive evaluation of composition at various depths along the thickness of vertical coupling of the upper InAs/AlGaAs and lower InAs/AlAs QDs layers of the sandwich structures. Based on the analysis of determined from the in-depth Raman spectra optical phonons frequencies, the depth distribution of composition in InAlAs and GaAlAs alloy layers formed as a result of strain-driven enhanced interdiffusion was determined.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0169-4332</s0>
</fA01>
<fA03 i2="1">
<s0>Appl. surf. sci.</s0>
</fA03>
<fA05>
<s2>260</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Submicron Raman and photoluminescence topography of InAs/Al(Ga)As quantum dots structures</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>EMRS 2011 Fall meeting symposium on Stress, structure and stoichiometry effects on nanomaterials</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>KOLOMYS (O. F.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>STRELCHUK (V. V.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>SHAMIRZAEV (T. S.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>ROMANYUK (A. S.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>TRONC (P.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>CRACIUM (Valentin)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>GABORIAUD (Rolly)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>SANCHEZ (Florencio)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="04" i2="1">
<s1>SCHROEDER (Thomas)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>V. Lashkaryov Institute of Semiconductor Physics National Academy of Sciences of Ukraine, 45 Nauky pr.</s1>
<s2>03028 Kyiv</s2>
<s3>UKR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>A.V. Rzhanov Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Sciences</s1>
<s2>630090 Novosibirsk</s2>
<s3>RUS</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Centre National de la Recherche Scientifique, Ecole Superieure de Physique et de Chimie Industrielles de la Villede Paris, 10 rue Vauquelin</s1>
<s2>75005 Paris</s2>
<s3>FRA</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>Laser Department, National Institute for Laser, Plasma and Radiation Physics</s1>
<s2>Magurele</s2>
<s3>ROU</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA15 i1="02">
<s1>Materials Science and Engineering, University of Florida</s1>
<s2>Gainesville</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA15 i1="03">
<s1>Institut Pprime, CNRS, University of Poitiers, ENSMA SP2MI</s1>
<s2>86962 Chasseneuil, Futuroscope</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</fA15>
<fA15 i1="04">
<s1>Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB</s1>
<s2>08193 Bellaterra</s2>
<s3>ESP</s3>
<sZ>3 aut.</sZ>
</fA15>
<fA15 i1="05">
<s1>IHP Microelectronics/Materials Research, Im Technologiepark 25</s1>
<s2>Frankfurt/Oder</s2>
<s3>DEU</s3>
<sZ>4 aut.</sZ>
</fA15>
<fA18 i1="01" i2="1">
<s1>European Materials Research Society (EMRS)</s1>
<s3>EUR</s3>
<s9>org-cong.</s9>
</fA18>
<fA20>
<s1>47-50</s1>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>16002</s2>
<s5>354000502061850100</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>19 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0081539</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Applied surface science</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Two-period structures with and without vertical coupling between indirect and direct bandgap InAs quantum dots (QDs) both with type I band alignment, grown by molecular-beam epitaxy, were investigated by confocal Raman and photoluminescence (PL) microspectroscopy. The observed blue shift of PL band of the indirect (direct) bandgap QD by 20 (80)meV with decrease of thickness of Ga(Al)As intermediate layer between two InAs QD layers from 30 to 8 nm is considered as caused by increase of elastic strains (decrease of QDs sizes) in QD layers and by coupling between QDs electronic states. Scanning confocal resonant Raman microspectroscopy was applied for non-destructive evaluation of composition at various depths along the thickness of vertical coupling of the upper InAs/AlGaAs and lower InAs/AlAs QDs layers of the sandwich structures. Based on the analysis of determined from the in-depth Raman spectra optical phonons frequencies, the depth distribution of composition in InAlAs and GaAlAs alloy layers formed as a result of strain-driven enhanced interdiffusion was determined.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70H55</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B70H30F</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Photoluminescence</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Photoluminescence</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Topographie surface</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Surface topography</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Arséniure d'indium</s0>
<s2>NK</s2>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Indium arsenides</s0>
<s2>NK</s2>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Semiconducteur</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Semiconductor materials</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Composé minéral</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Inorganic compounds</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Point quantique</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Quantum dots</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Bande interdite</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Energy gap</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Croissance film</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Film growth</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Epitaxie jet moléculaire</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Molecular beam epitaxy</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Déplacement vers le bleu</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Blue shift</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Déplacement raie</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Spectral line shift</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Epaisseur</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Thickness</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Bicouche</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Bilayers</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Déformation élastique</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Elastic deformation</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Structure électronique</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Electronic structure</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Diffusion Raman résonance</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Resonance Raman scattering</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Difusión Ramán resonancia</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Arséniure d'aluminium</s0>
<s2>NK</s2>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Aluminium arsenides</s0>
<s2>NK</s2>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Composé ternaire</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Ternary compounds</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Arséniure de gallium</s0>
<s2>NK</s2>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Gallium arsenides</s0>
<s2>NK</s2>
<s5>19</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Structure sandwich</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Sandwich structures</s0>
<s5>20</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Spectre phonon</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>Phonon spectra</s0>
<s5>21</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>Phonon optique</s0>
<s5>22</s5>
</fC03>
<fC03 i1="22" i2="3" l="ENG">
<s0>Optical phonons</s0>
<s5>22</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>Profil profondeur</s0>
<s5>23</s5>
</fC03>
<fC03 i1="23" i2="3" l="ENG">
<s0>Depth profiles</s0>
<s5>23</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>Déformation mécanique</s0>
<s5>24</s5>
</fC03>
<fC03 i1="24" i2="3" l="ENG">
<s0>Strains</s0>
<s5>24</s5>
</fC03>
<fC03 i1="25" i2="X" l="FRE">
<s0>Diffusion mutuelle</s0>
<s5>25</s5>
</fC03>
<fC03 i1="25" i2="X" l="ENG">
<s0>Interdiffusion</s0>
<s5>25</s5>
</fC03>
<fC03 i1="25" i2="X" l="SPA">
<s0>Difusión mútua</s0>
<s5>25</s5>
</fC03>
<fC03 i1="26" i2="X" l="FRE">
<s0>Diffusion Raman</s0>
<s5>26</s5>
</fC03>
<fC03 i1="26" i2="X" l="ENG">
<s0>Raman scattering</s0>
<s5>26</s5>
</fC03>
<fC03 i1="26" i2="X" l="SPA">
<s0>Difusión Ramán</s0>
<s5>26</s5>
</fC03>
<fC03 i1="27" i2="3" l="FRE">
<s0>InAs</s0>
<s4>INC</s4>
<s5>32</s5>
</fC03>
<fC03 i1="28" i2="3" l="FRE">
<s0>AlAs</s0>
<s4>INC</s4>
<s5>33</s5>
</fC03>
<fC03 i1="29" i2="3" l="FRE">
<s0>AlGaAs</s0>
<s4>INC</s4>
<s5>34</s5>
</fC03>
<fC03 i1="30" i2="3" l="FRE">
<s0>7855</s0>
<s2>PAC</s2>
<s4>INC</s4>
<s5>45</s5>
</fC03>
<fC03 i1="31" i2="3" l="FRE">
<s0>7830F</s0>
<s2>PAC</s2>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fN21>
<s1>049</s1>
</fN21>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>Stress, structure, and stoichiometry effects on the properties of nanomaterials Symposium</s1>
<s3>Warsaw POL</s3>
<s4>2011-09-19</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Russie/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000030 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Russie/Analysis/biblio.hfd -nk 000030 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Russie
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:13-0081539
   |texte=   Submicron Raman and photoluminescence topography of InAs/Al(Ga)As quantum dots structures
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024